PRELUDE

Install & Communicate with XG5000 PLC: Guide for Beginners

The three videos below can be used as guides.

Install & Com w/ XG5000 PLC: Guide for Beginners

LSIS XGB PLC - Build a Ladder Logic Program

Download & Test XGB PLC Program

A **Programmable Logic Controller (PLC)** is a digital computer used for automating electromechanical processes. The **LS Electric XGB series** PLC is rugged and flexible, ideal for many industrial applications. This guide shows you how to install and launch **XG5000** programming software, connect via **USB and Ethernet**, and begin writing your first ladder logic program.

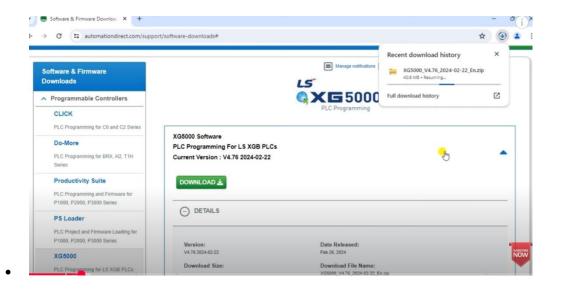
Step 1: Check System Requirements

1. OS Compatibility

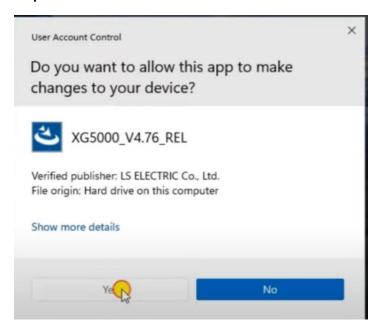
Ensure your Windows OS matches XG5000's supported versions (e.g., Windows 7, 8, 10, etc.).

2. Hardware Resources

Verify you have enough RAM, disk space, and administrative privileges.


Step 2: Download the XG5000 Software

1. Locate the Software


 Download XG5000 v4.76 (or latest) from LS Electric's official site or a trusted distributor (e.g., Automation Direct).

2. Extract Files

o The file (~447 MB) is provided as a ZIP. **Right-click** → **"Extract..."** to unzip.

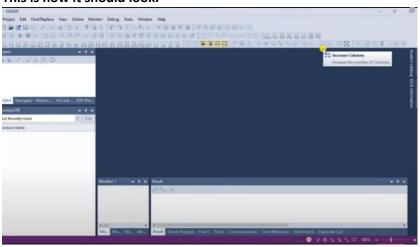
Step 3: Install XG5000

1. Run as Administrator

o Right-click the setup file and select "Run as administrator."

2. Follow Prompts

- Allow changes to your PC.
- o Choose the **installation directory** and confirm optional components (like drivers).


3. Finish & Confirm

o After installation, an XG5000 shortcut appears on your Desktop.

Step 4: Launch the Programming Software

1. Open XG5000

- o Double-click the Desktop shortcut or locate **XG5000** in the Start menu.
- o This is how it should look.

Step 5: Connect Your PLC to Your Computer (Establish Communication)

5A: USB Connection

1. Mini USB Cable

• Use a mini USB-to-USB cable (purchased separately).

2. Device Manager

- o Press Win + X → Device Manager.
- Confirm LSIS XG Series driver appears under USB Controllers.

5B: Create a New Project

1. "New Project"

- o Click **File** → **New Project** or the **New Project** icon.
- Name it (e.g., "ACC_Automation"), select XGB I for CPU series (e.g., XBM-Dxxx), and keep LD (Ladder) as the default language.

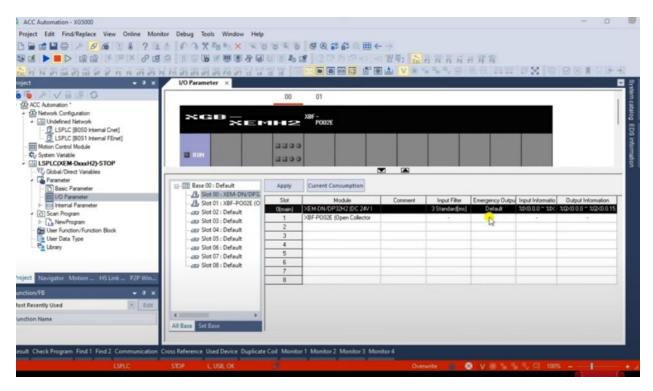
2. Program Name

Avoid spaces/special characters.

5C: Configure USB Communication

- 1. Online → Connection Settings
 - Choose USB as Connection Type.

2. **Connect**


If successful, the bottom status bar in XG5000 turns **red** (PLC Stop mode) or **green** (Run mode) to indicate status.

3. Online Read / I/O Sync

o Perform an **Online** → **Read** to synchronize I/O parameters.

5D: Check I/O Parameters

• Review inputs in the I/O Parameter window.

5E: Switch PLC to Run/Stop

• Using the PLC's physical switch or software command, you can switch between **Run** (green status) or **Stop** (red status).

Build a Project with XGB E-Type PLC + XG5000 Programming Software

Introduction

This guide demonstrates how to build a project in XG5000 for an **XGB E-Type PLC**. We'll create a new project, configure the CPU model, and write a simple ladder logic program with an internal bit (M0.0) driving an output coil (P4.0).

Step 1: Launch XG5000

1. Open XG5000

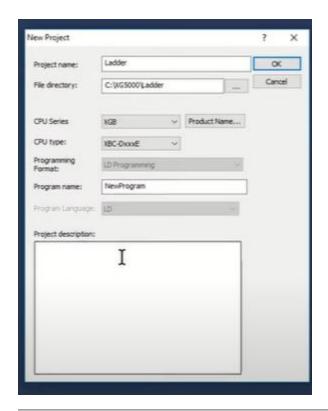
From your Windows Start menu, locate "XG5000 Program Group" and click "XG5000."

2. Familiarize Yourself

 Check the main menu at the top and the **Project Tree** on the left (once a project is open).

Step 2: Create a New Project

1. Select "New Project"


On the main menu, go File → New Project, or use the New Project icon.

2. Project Details

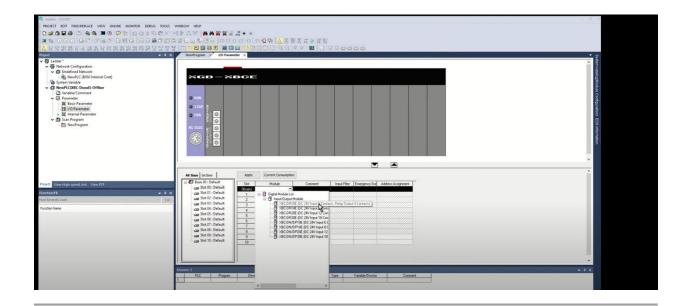
- o **Project Name**: e.g., ladder.
- Project Directory: By default, it's inside the XG5000 directory.
- o CPU Series: Choose XGB.
- o **CPU Type**: Select the **E-Type** CPU (e.g., XBE-...).
- o **Programming Format**: Ladder (LD) (pre-selected).
- o **Program Name**: Use the default "New Program" or rename as desired.
- Optional: Add a Project Description for reference.

3. Click "OK"

o The **Project Tree** populates on the left, indicating a successful project creation.

Step 3: Configure the PLC Model

1. Double-click "IO Parameter"


- Located in the Project Tree.
- o A graphical depiction of the PLC system appears.

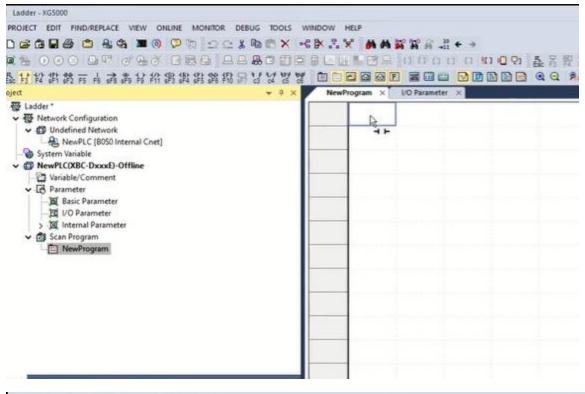
2. Slot 0 → Module Column

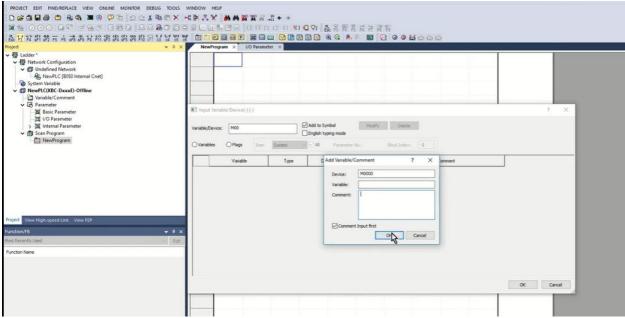
- o Click the dropdown to reveal **Digital Module** → **Input/Output Module**.
- Select the specific E-Type CPU model that matches your hardware.

3. Click "Apply"

o The CPU model is added to your project.

Step 4: Open the Ladder Program

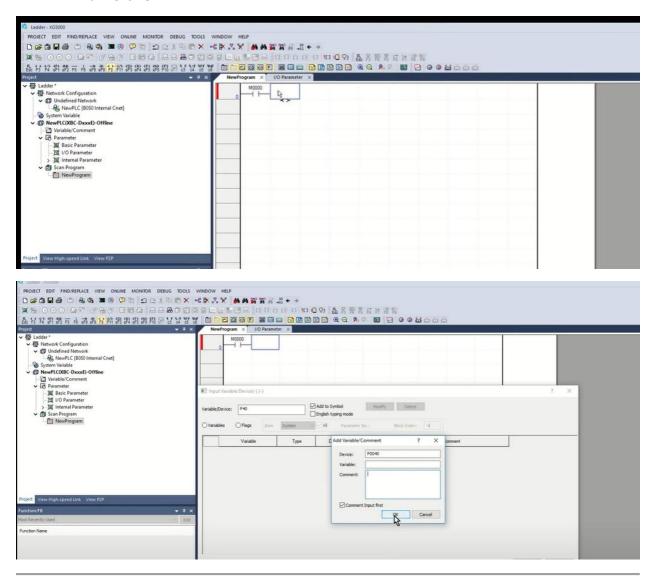

- 1. Under "Scan Program," Double-click "New Program"
 - o The Ladder Editor window opens.


2. Toolbars & Editor

o Familiarize yourself with the toolbar icons (contacts, coils, functions, etc.).

Step 5: Insert Ladder Elements

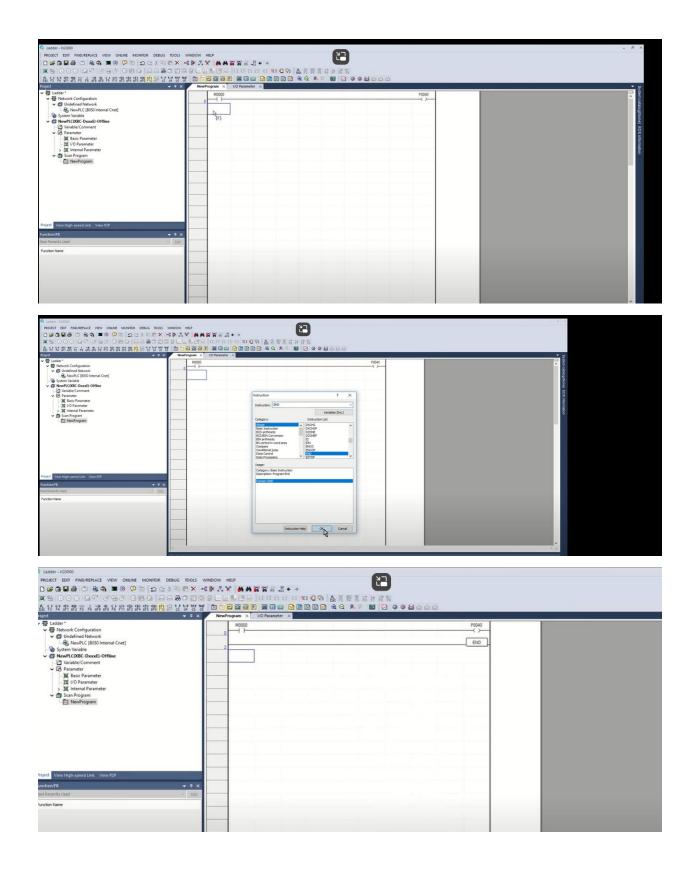
- 1. Normally Open Contact (M0.0)
 - Select the **Normally Open** icon from the toolbar.
 - o Click on the left side of the first rung in the ladder editor.
 - The "Input Variable/Device" window appears; assign **M0.0** (internal bit).
 - Click **OK** to confirm.



2. Output Coil (P4.0)

- o Select the **Output Coil** icon from the toolbar.
- o Place it to the right of M0.0 on the rung.
- o Assign **P4.0** (the first discrete output on this PLC).

o Click OK.


Step 6: Add the "END" Instruction

1. Bracket (F) Icon

- On the toolbar, select the bracket instruction icon (often labeled F).
- Place it after the coil on the rung.

2. Instruction Window

- o Type "IEND" (or "END" depending on your PLC type) and click OK.
- This signals the end of the program.

Step 7: Save the Project

- 1. Go to "Project" \rightarrow "Save" (or click the Save icon).
- 2. Check Project Tree
 - o Confirm everything is updated with your rung changes.

Conclusion

You have successfully **created a new XG5000 project** for an **XGB E-Type PLC**, configured the CPU model, and built a **simple ladder logic program** (M0.0 driving P4.0, terminated by an IEND instruction).

Download & Test Ladder Logic on an XGB E-Type PLC

Introduction

In this guide, we demonstrate how to download and test a ladder logic program in an **XGB E-Type PLC** using the **LS XG5000** software. You will learn how to connect the PLC, download your program, go online for monitoring, and verify basic I/O functionality.

Step 1: Verify PLC Power

1. Check Power Supply

- o Confirm the **PLC** is **powered correctly** in accordance with the user manual.
- Make sure the RUN LED on the PLC (if applicable) is off or showing the correct status for a PLC in Stop mode.

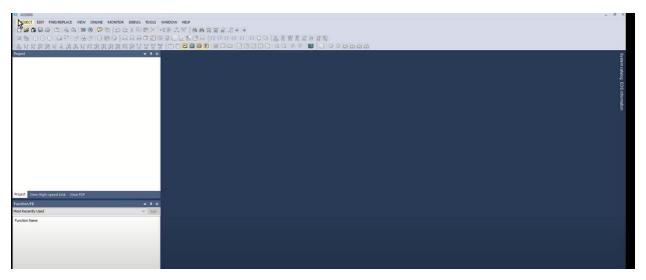
Step 2: Connect the Programming Cable

1. Choose the Correct Cable

- o For the E-type PLC, use the **PMC-310S** programming cable.
- o If your PC lacks a serial port, a **USB-to-serial adapter** is required.

2. Attach Cable

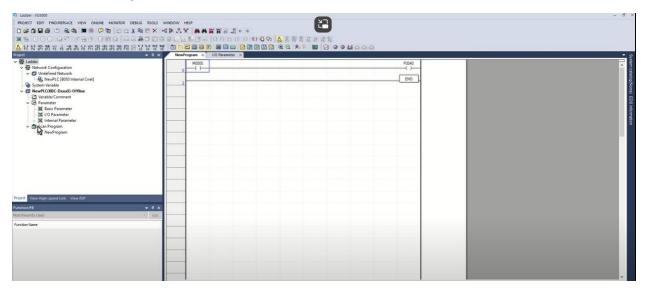
o Plug one end into the **PLC's programming port** and the other into your **PC**.



Step 3: Start the XG5000 Software

1. Open XG5000

 Go to your Start menu → "XG5000 Program Group" or double-click an XG5000 shortcut on your Desktop.



1. Go to Project → Open

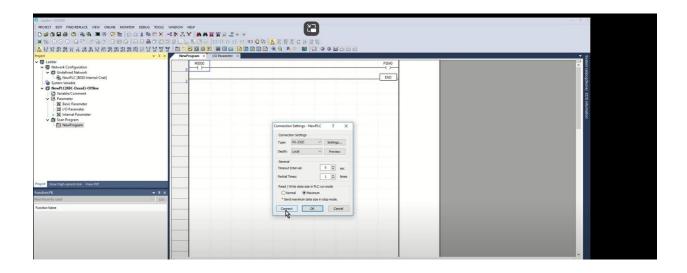
Select the previously created project (previously it's called "ladder").

2. Locate Ladder Logic

 Under "Scan Program" in the Project Tree, double-click the ladder logic file (e.g., "New Program").

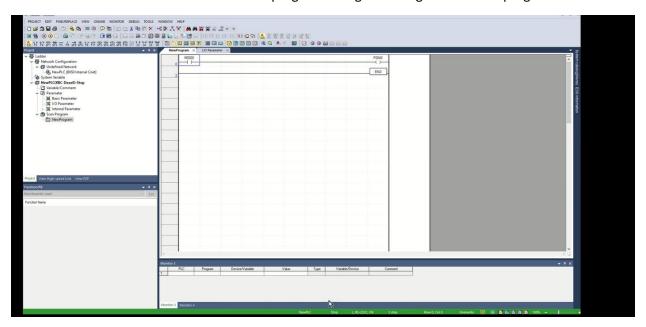
Step 5: Connect to the PLC (RS-232C / Serial)

1. Open Connection Settings


o From the top menu, go Online \rightarrow Connection Settings.

2. Set Type to RS-232C

- If the dropdown is not already RS-232C, select it. Use auto scan if necessary to scan the proper com port.
- Keep other settings at their defaults unless otherwise specified.


3. Click "Connect"

o The **status bar** at the bottom will turn from **blue** (offline) to **green** (online) if connected.

Step 6: Download the Program to the PLC

- 1. Go to "Online" → "Write"
 - o A dialog appears confirming what to download (Program, Parameters, etc.).
- 2. Leave Checkboxes as Default
 - o Typically, **Program, Parameter, Symbol** are selected.
- 3. Click "OK"
 - o Observe the status bar or a progress dialog indicating download in progress.

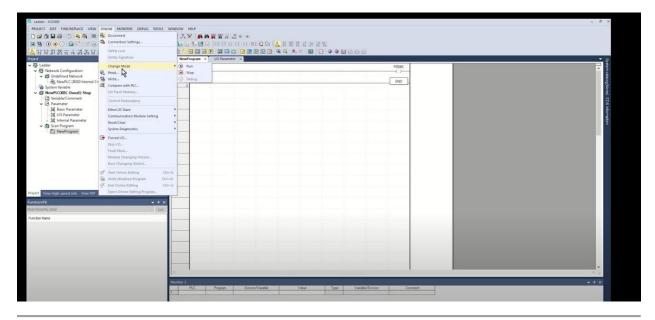
Step 7: Verify Download Completion

1. Writing Complete

o A "Writing Complete" pop-up window should appear. Click OK.

2. PLC Reset Dialog

- o The next window may say "PLC is not in a running state. Reset PLC?"
- Click **OK** to allow the reset.


Step 8: Reconnect & Check PLC Mode

1. Reconnect

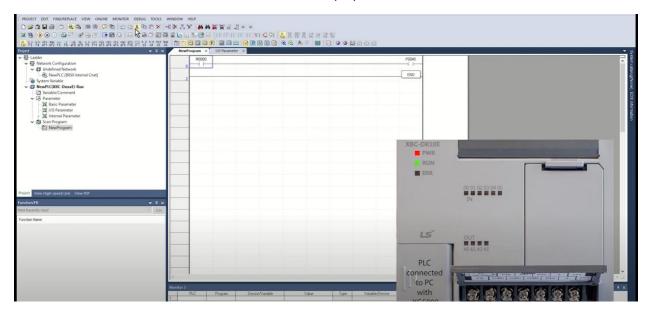
o From **Online** menu, click **"Connect"** again if disconnected.

2. Status Bar

o Displays either **Stop** or **Run**. If it reads **Stop**, the PLC is not executing logic.

Step 9: Switch the PLC to Run Mode

- 1. Go to "Online" → "Change Mode"
 - Select "Run".


2. Confirm

A pop-up asks, "Are you sure?" Click Yes.

3. Check RUN LED

o The PLC's front panel **RUN LED** should illuminate green.

The XG5000 status bar should also display "Run."

Step 10: Start Monitoring

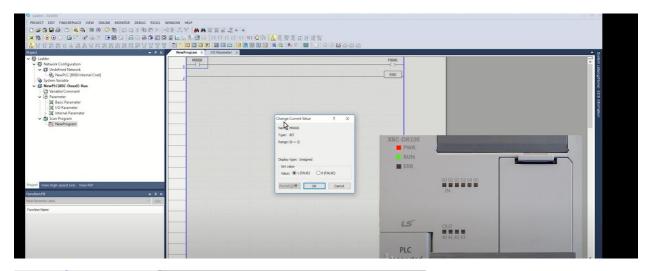
1. Online Monitoring

- o From Monitor menu, select "Start Monitoring."
- o Ladder elements are highlighted to indicate live monitoring.

2. Observe Contacts & Coils

o Watch the real-time status (ON/OFF, True/False) in the ladder logic window.

Step 11: Toggle Bits for Testing


- 1. Double-Click a Contact (e.g., M0.0)
 - o A "Change Current Value" window appears.

2. Set to True

- o This forces M0.0 ON; observe the coil P40 turning ON as well.
- o The PLC's actual output **P40** should energize (if physically wired to an output).

3. Toggle OFF

Repeat the same process, selecting False to turn the bit OFF.

Conclusion

You have successfully **downloaded** a program to the **XGB E-Type PLC**, switched it to **Run** mode, and **tested** basic functionality using **XG5000**'s monitoring feature. For more details or advanced topics, consult LS Electric's official documentation and resources.